A Previsão Cálculo Exemplos A.1 Previsão Cálculo Métodos Doze métodos de cálculo de previsões estão disponíveis. A maioria desses métodos fornece controle limitado do usuário. Por exemplo, o peso colocado nos dados históricos recentes ou o intervalo de datas dos dados históricos utilizados nos cálculos pode ser especificado. Os exemplos seguintes mostram o procedimento de cálculo para cada um dos métodos de previsão disponíveis, dado um conjunto idêntico de dados históricos. Os exemplos a seguir usam os mesmos dados de vendas de 2004 e 2005 para produzir uma previsão de vendas de 2006. Além do cálculo da previsão, cada exemplo inclui uma previsão simulada de 2005 para um período de retenção de três meses (opção de processamento 19 3), que é usado para os cálculos de precisão e desvio absoluto médio (vendas reais em comparação com a previsão simulada). A.2 Critérios de Avaliação de Desempenho de Previsão Dependendo da sua seleção de opções de processamento e das tendências e padrões existentes nos dados de vendas, alguns métodos de previsão terão um desempenho melhor do que outros para um dado conjunto de dados históricos. Um método de previsão apropriado para um produto pode não ser apropriado para outro produto. Também é improvável que um método de previsão que forneça bons resultados numa fase do ciclo de vida de um produto permaneça apropriado ao longo de todo o ciclo de vida. Você pode escolher entre dois métodos para avaliar o desempenho atual dos métodos de previsão. Estes são Desvio Médio Absoluto (MAD) e Porcentagem de Precisão (POA). Ambos os métodos de avaliação de desempenho requerem dados de vendas históricos para um período de tempo especificado pelo usuário. Esse período de tempo é chamado de período de retenção ou período de melhor ajuste (PBF). Os dados neste período são usados como base para recomendar qual dos métodos de previsão usar na realização da projeção de projeção seguinte. Essa recomendação é específica para cada produto e pode mudar de uma geração de projeção para outra. Os dois métodos de avaliação de desempenho de previsão são demonstrados nas páginas que seguem os exemplos dos doze métodos de previsão. A.3 Método 1 - Percentual especificado no último ano Este método multiplica os dados de vendas do ano anterior por um fator especificado pelo usuário, por exemplo, 1,10 para um aumento de 10 ou 0,97 para uma diminuição de 3. Histórico de vendas necessário: Um ano para calcular a previsão mais o número de períodos de tempo especificado pelo usuário para avaliar o desempenho da previsão (opção de processamento 19). A.4.1 Cálculo de Previsão Faixa do histórico de vendas a ser usado no cálculo do fator de crescimento (opção de processamento 2a) 3 neste exemplo. Soma dos últimos três meses de 2005: 114 119 137 370 Soma dos mesmos três meses do ano anterior: 123 139 133 395 O fator calculado 370395 0,9367 Calcule as previsões: Janeiro de 2005 vendas 128 0,9367 119,8036 ou cerca de 120 de fevereiro de 2005 vendas 117 0,9367 109,5939 ou cerca de 110 de março de 2005 vendas 115 0,9367 107,7205 ou cerca de 108 A.4.2 Cálculo de Previsão Simulado Soma dos três meses de 2005 antes do período de retenção (julho, agosto, setembro): 129 140 131 400 Soma os mesmos três meses para o Ano anterior: 141 128 118 387 O fator calculado 400387 1.033591731 Calcula a previsão simulada: Outubro, 2004 vendas 123 1.033591731 127.13178 Vendas de novembro de 2004 139 1.033591731 143.66925 Vendas de dezembro de 2004 133 1.033591731 137.4677 A.4.3 Percentagem de Precisão Cálculo POA (127.13178 143.66925 137.4677) (114 119 137) 100 408,26873 370 100 110,3429 A.4.4 Cálculo do Desvio Absoluto Médio MAD (127,13178 - 114 143,66925 - 119 137,4677 - 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Método 3 - Último ano até este ano Este método copia os dados de vendas do ano anterior para o próximo ano. Histórico de vendas necessário: Um ano para calcular a previsão mais o número de períodos de tempo especificados para avaliar o desempenho da previsão (opção de processamento 19). A.6.1 Cálculo da Previsão Número de períodos a incluir na média (opção de processamento 4a) 3 neste exemplo Para cada mês da previsão, faça a média dos dados dos três meses anteriores. Previsão de Janeiro: 114 119 137 370, 370 3 123.333 ou 123 Previsão de Fevereiro: 119 137 123 379, 379 3 126.333 ou 126 Previsão de Março: 137 123 126 379, 386 3 128.667 ou 129 A.6.2 Cálculo Previsto Simulado Outubro 2005 140 131) 3 133.3333 Vendas de Novembro de 2005 (140 131 114) 3 128.3333 Vendas de Dezembro de 2005 (131 114 119) 3 121.3333 A.6.3 Percentagem de Precisão Cálculo POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Média Absoluta Cálculo do Desvio MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Método 5 - Aproximação linear A aproximação linear calcula uma tendência baseada em dois pontos de dados do histórico de vendas. Esses dois pontos definem uma linha de tendência reta projetada para o futuro. Use esse método com cautela, pois as previsões de longo alcance são alavancadas por pequenas alterações em apenas dois pontos de dados. Histórico de vendas necessário: O número de períodos a incluir em regressão (opção de processamento 5a), mais 1 mais o número de períodos de tempo para avaliar o desempenho da previsão (opção de processamento 19). A.8.1 Cálculo de Previsão Número de períodos a incluir em regressão (opção de processamento 6a) 3 neste exemplo Para cada mês da previsão, adicione o aumento ou diminuição durante os períodos especificados antes do período de retenção do período anterior. Média dos três meses anteriores (114 119 137) 3 123.3333 Resumo dos três meses anteriores com ponderação considerada (114 1) (119 2) (137 3) 763 Diferença entre os valores 763 - 123.3333 (1 2 3) 23 Relação ( 12 22 32) - 2 3 14 - 12 2 Valor1 DiferençaRatio 232 11,5 Valor2 Relação média - valor1 123,3333 - 11,5 2 100,333 Previsão (1 n) valor1 valor2 4 11,5 100,3333 146,333 ou 146 Previsão 5 11,5 100,3333 157,8333 ou 158 Previsão 6 11,5 100,3333 169,3333 Ou 169 A.8.2 Cálculo de Previsão Simulado Vendas de Outubro de 2004: Média dos três meses anteriores (129 140 131) 3 133.3333 Resumo dos três meses anteriores com ponderação considerada (129 1) (140 2) (131 3) 802 Diferença entre Valores 802 - 133.3333 (1 2 3) 2 Relação (12 22 32) - 2 3 14 - 12 2 Valor1 DiferençaRatio 22 1 Valor2 Relação média - valor1 133.3333 - 1 2 131.3333 Previsão (1 n) valor1 valor2 4 1 131.3333 135.3333 Novembro de 2004 vendas Média dos últimos três meses (140 131 114) 3 128.3333 Resumo dos três meses anteriores com peso considerado (140 1) (131 2) (114 3) 744 Diferença entre os valores 744 - 128.3333 (1 2 3) -25.9999 Valor1 DiferençaRatio -25,99992 -12,9999 Valor2 Relação média-valor1 128,3333 - (-12,9999) 2 154,3333 Previsão 4 -12,9999 154,3333 102,3333 Vendas de Dezembro de 2004 Média dos três meses anteriores (131 114 119) 3 121.3333 Resumo dos três meses anteriores com ponderação considerada 131 1) (114 2) (119 3) 716 Diferença entre os valores 716 - 121.3333 (1 2 3) -11.9999 Valor1 DiferençaRatio -11.99992 -5.9999 Valor2 Relação média-valor1 121.3333 - (-5.9999) 2 133.3333 Previsão 4 (-5.9999 ) 133,3333 109,3333 A.8.3 Percentagem de Precisão Cálculo POA (135,33 102,33 109,33) (114 119 137) 100 93,78 A.8,4 Cálculo do Desvio Absoluto Média MAD (135,33-1 114 102,33 - 119 109,33-137) 3 21,88 A.9 Método 7 - Secon D Grau de Aproximação A Regressão Linear determina os valores de aeb na fórmula de previsão Y a bX com o objetivo de ajustar uma linha reta aos dados do histórico de vendas. Aproximação de segundo grau é semelhante. No entanto, este método determina valores para a, b e c na fórmula de previsão Y a bX cX2 com o objetivo de ajustar uma curva aos dados do histórico de vendas. Este método pode ser útil quando um produto está na transição entre fases de um ciclo de vida. Por exemplo, quando um novo produto passa da introdução para os estádios de crescimento, a tendência de vendas pode acelerar. Devido ao termo de segunda ordem, a previsão pode aproximar-se rapidamente do infinito ou cair para zero (dependendo se o coeficiente c é positivo ou negativo). Portanto, este método é útil apenas no curto prazo. Especificações de previsão: As fórmulas encontram a, b e c para encaixar uma curva em exatamente três pontos. Você especifica n na opção de processamento 7a, o número de períodos de tempo de dados a serem acumulados em cada um dos três pontos. Neste exemplo n 3. Portanto, os dados de vendas reais de abril a junho são combinados no primeiro ponto, Q1. Julho a setembro são adicionados em conjunto para criar Q2, e de outubro a dezembro somam para Q3. A curva será ajustada aos três valores Q1, Q2 e Q3. Histórico de vendas necessário: 3 n períodos para o cálculo da previsão mais o número de períodos necessários para avaliar o desempenho da previsão (PBF). Número de períodos a incluir (opção de processamento 7a) 3 neste exemplo Utilize os meses anteriores (3 n) em blocos de três meses: Q1 (Abr - Jun) 125 122 137 384 Q2 (Jul - Set) 129 140 131 400 Q3 O passo seguinte envolve o cálculo dos três coeficientes a, b e c a serem utilizados na fórmula de previsão Y a bX cX2 (1) Q1 a bX cX2 (onde X1) abc (2) Q2 A b c c X 2 (onde X 2) a 2b 4c (3) Q3 a bX cX2 (onde X 3) a 3b 9c Resolva as três equações simultaneamente para encontrar b, ae c: Subtraia a equação (1) da equação (2) E resolva para b (2) - (1) Q2 - Q1 b 3c Substitua esta equação para b na equação (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Finalmente, substitua essas equações por aeb por (Q3 - Q2) (Q1 - Q2) 2 O método de Aproximação de Segundo Grau calcula a, b e c da seguinte forma: a Q3 (Q2 - Q1) 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) 2 (370-400) (384-400) 2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 Previsão de Janeiro a Março (X4): (322 340 - 368) 3 2943 98 Por período Previsão de Abril a Junho (X5): (322 425-575) 3 57.333 ou 57 por período Previsão de Julho a Setembro (X6): (322 510 - 828) 3 1.33 ou 1 por período de Outubro a Dezembro (X7) 595 - 11273 -70 A.9.2 Cálculo de Previsão Simulado Vendas de outubro, novembro e dezembro de 2004: Q1 (jan - mar) 360 Q2 (abril a junho) 384 Q3 (jul - set) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Percentagem do cálculo da precisão POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Cálculo do Desvio Absoluto Médio MAD (136 - 114 136 - 119 136 - 137) 3 13,33 A.10 Método 8 - Método Flexível O Método Flexível (Percentagem sobre n Meses Anterior) é semelhante ao Método 1, Percentagem em relação ao ano passado. Ambos os métodos multiplicam os dados de vendas de um período de tempo anterior por um fator especificado pelo usuário e projetam o resultado para o futuro. No método Percent Over Last Year, a projeção é baseada em dados do mesmo período do ano anterior. O método flexível adiciona a capacidade de especificar um período de tempo diferente do mesmo período do ano passado para usar como base para os cálculos. Fator de multiplicação. Por exemplo, especifique 1.15 na opção de processamento 8b para aumentar os dados do histórico de vendas anterior em 15. Período de base. Por exemplo, n 3 fará com que a primeira previsão se baseie nos dados de vendas em outubro de 2005. Histórico mínimo de vendas: O usuário especificou o número de períodos de volta ao período base, mais o número de períodos necessários para avaliar o desempenho da previsão PBF). A.10.4 Cálculo do Desvio Absoluto Médio MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Método 9 - Média Móvel Ponderada O método Média Móvel Ponderada (WMA) é semelhante ao Método 4, Média Móvel (MA). No entanto, com a Média Móvel Ponderada, você pode atribuir pesos desiguais aos dados históricos. O método calcula uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Os dados mais recentes geralmente são atribuídos a um peso maior do que os dados mais antigos, o que torna a WMA mais responsiva às mudanças no nível de vendas. No entanto, o viés de previsão e erros sistemáticos ainda ocorrem quando o histórico de vendas do produto exibe tendência forte ou padrões sazonais. Esse método funciona melhor para as projeções de curto prazo de produtos maduros do que para produtos em estágios de crescimento ou obsolescência do ciclo de vida. N o número de períodos de histórico de vendas a serem utilizados no cálculo da previsão. Por exemplo, especifique n 3 na opção de processamento 9a para usar os três períodos mais recentes como base para a projeção para o próximo período de tempo. Um grande valor para n (como 12) requer mais histórico de vendas. Isso resulta em uma previsão estável, mas será lento para reconhecer mudanças no nível de vendas. Por outro lado, um pequeno valor para n (como 3) responderá mais rapidamente às mudanças no nível de vendas, mas a previsão pode flutuar tão amplamente que a produção não pode responder às variações. O peso atribuído a cada um dos períodos de dados históricos. Os pesos atribuídos devem totalizar 1,00. Por exemplo, quando n 3, atribua pesos de 0,6, 0,3 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13,5 A.12 Método 10 - Suavização linear Este método é semelhante ao Método 9, Média Móvel Ponderada (WMA). No entanto, em vez de atribuir arbitrariamente ponderações aos dados históricos, uma fórmula é usada para atribuir pesos que diminuem linearmente e somam a 1,00. O método calcula então uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Como acontece com todas as técnicas de projeção de média móvel linear, o viés de previsão e os erros sistemáticos ocorrem quando o histórico de vendas do produto exibe tendência forte ou padrões sazonais. Esse método funciona melhor para as projeções de curto prazo de produtos maduros do que para produtos em estágios de crescimento ou obsolescência do ciclo de vida. N o número de períodos de histórico de vendas a serem utilizados no cálculo da previsão. Isto é especificado na opção de processamento 10a. Por exemplo, especifique n 3 na opção de processamento 10b para usar os três períodos mais recentes como base para a projeção para o próximo período de tempo. O sistema atribuirá automaticamente os pesos aos dados históricos que diminuem linearmente e somam a 1,00. Por exemplo, quando n3, o sistema atribuirá pesos de 0,5, 0,3333 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). A.12.1 Cálculo de Previsão Número de períodos a incluir na média de suavização (opção de processamento 10a) 3 neste exemplo Razão para um período anterior 3 (n2 n) 2 3 (32 3) 2 36 0,5 Razão para dois períodos anteriores 2 (n2 n ) 2 2 (32 3) 2 26 0,3333 .. Proporção para três períodos anteriores 1 (n2 n) 2 1 (32 3) 2 16 0,1666 .. Previsão de Janeiro: 137 0,5 119 13 114 16 127,16 ou 127 Previsão de Fevereiro: 127 0,5 137 13 119 16 129 Previsão de Março: 129 0,5 127 13 137 16 129,666 ou 130 A.12.2 Cálculo Previsto Simulado Outubro 2004 vendas 129 16 140 26 131 36 133,6666 Novembro 2004 vendas 140 16 131 26 114 36 124 Dezembro 2004 vendas 131 16 114 26 119 36 119.3333 A.12.3 Cálculo do Desvio Absoluto Médio MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Método 11 - Suavização Exponencial Este método é semelhante ao Método 10, Linear Smoothing. No Linear Smoothing, o sistema atribui pesos aos dados históricos que diminuem linearmente. Na suavização exponencial, o sistema atribui pesos que decrescem exponencialmente. A equação de previsão de suavização exponencial é: Previsão a (Vendas reais anteriores) (1 - a) Previsão Anterior A previsão é uma média ponderada das vendas reais do período anterior e da previsão do período anterior. A é o peso aplicado às vendas reais do período anterior. (1-a) é o peso aplicado à previsão do período anterior. Valores válidos para um intervalo de 0 a 1, e geralmente caem entre 0,1 e 0,4. A soma dos pesos é 1,00. A (1-a) 1 Você deve atribuir um valor para a constante de suavização, a. Se você não atribui valores para a constante de suavização, o sistema calcula um valor assumido com base no número de períodos do histórico de vendas especificado na opção de processamento 11a. A constante de suavização utilizada no cálculo da média suavizada para o nível geral ou magnitude das vendas. Valores válidos para um intervalo de 0 a 1. n o intervalo de dados do histórico de vendas a incluir nos cálculos. Geralmente um ano de dados de histórico de vendas é suficiente para estimar o nível geral de vendas. Para este exemplo, foi escolhido um pequeno valor para n (n 3) para reduzir os cálculos manuais necessários para verificar os resultados. A suavização exponencial pode gerar uma previsão baseada em apenas um ponto de dados históricos. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). A.13.1 Cálculo de Previsão Número de períodos a incluir na média de suavização (opção de processamento 11a) 3 e factor alfa (opção de processamento 11b) em branco neste exemplo um factor para os dados de vendas mais antigos 2 (11), ou 1 quando alfa é especificado Um fator para os dados de vendas 2 mais antigos 2 (12), ou alfa quando alfa é especificado um fator para os dados mais antigos de vendas 3 (13), ou alfa quando alfa é especificado um fator para os dados de vendas mais recentes 2 (1n) , Ou alfa quando alfa é especificado Novembro Sm. Média. A (Outubro Real) (1 - a) Outubro Sm. Média. 1 114 0 0 114 Dezembro Sm. Média. A (Novembro Real) (1 - a) Novembro Sm. Média. 23 119 13 114 117.3333 Janeiro Previsão a (Dezembro Real) (1 - a) Dezembro Sm. Média. 24 137 24 117.3333 127.16665 ou 127 Fevereiro Previsão Janeiro Previsão Previsão Janeiro Previsão 127 A.13.2 Previsão simulada Cálculo Julho, 2004 Sm. Média. 22 129 129 Agosto Sm. Média. 23 140 13 129 136,333 Setembro Sm. Média. 24 131 24 136.3333 133.6666 Outubro, 2004 vendas Setembro Sm. Média. 133,6666 Agosto, 2004 Sm. Média. 22 140 140 Setembro Sm. Média. 23 131 13 140 134 Outubro Sm. Média. 24 114 24 134 124 Novembro, 2004 vendas Setembro Sm. Média. 124 Setembro 2004 Sm. Média. 22 131 131 Outubro Sm. Média. 23 114 13 131 119,6666 Novembro Sm. Média. 24 119 24 119,6666 119,3333 Dezembro 2004 vendas Setembro Sm. Média. 119.3333 A.13.3 Percentagem de Precisão Cálculo POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Cálculo do Desvio Absoluto Médio MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Método 12 - Suavização Exponencial Com Tendência e Sazonalidade Este método é semelhante ao Método 11, Suavização Exponencial em que uma média suavizada é calculada. No entanto, o Método 12 também inclui um termo na equação de previsão para calcular uma tendência suavizada. A previsão é composta por uma média suavizada ajustada para uma tendência linear. Quando especificada na opção de processamento, a previsão também é ajustada pela sazonalidade. A constante de suavização utilizada no cálculo da média suavizada para o nível geral ou magnitude das vendas. Os valores válidos para alfa variam de 0 a 1. b a constante de suavização utilizada no cálculo da média suavizada para a componente de tendência da previsão. Os valores válidos para o intervalo beta variam de 0 a 1. Se um índice sazonal é aplicado à previsão aeb são independentes uns dos outros. Eles não precisam adicionar 1.0. Histórico de vendas mínimo obrigatório: dois anos mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). O método 12 usa duas equações exponenciais de suavização e uma média simples para calcular uma média suavizada, uma tendência suavizada e um fator sazonal médio simples. A.14.1 Cálculo de Previsão A) Uma média exponencialmente suavizada MAD (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Avaliação das Previsões Você pode selecionar métodos de previsão para gerar até doze previsões para cada produto. Cada método de previsão provavelmente criará uma projeção ligeiramente diferente. Quando milhares de produtos são previstos, é impraticável para fazer uma decisão subjetiva sobre qual das previsões a utilizar em seus planos para cada um dos produtos. O sistema avalia automaticamente o desempenho de cada um dos métodos de previsão selecionados e para cada um dos produtos previstos. Você pode escolher entre dois critérios de desempenho, Desvio Médio Absoluto (MAD) e Porcentagem de Precisão (POA). MAD é uma medida do erro de previsão. POA é uma medida do viés de previsão. Ambas as técnicas de avaliação de desempenho requerem dados de histórico de vendas reais para um período de tempo especificado pelo usuário. Esse período da história recente é chamado de período de retenção ou período de melhor ajuste (PBF). Para medir o desempenho de um método de previsão, use as fórmulas de previsão para simular uma previsão para o período de retenção histórico. Geralmente, haverá diferenças entre os dados de vendas reais ea previsão simulada para o período de retenção. Quando vários métodos de previsão são selecionados, esse mesmo processo ocorre para cada método. Várias previsões são calculadas para o período de retenção e comparadas com o histórico de vendas conhecido para esse mesmo período de tempo. O método de previsão que produz o melhor ajuste (melhor ajuste) entre a previsão e as vendas reais durante o período de retenção é recomendado para uso em seus planos. Essa recomendação é específica para cada produto e pode mudar de uma geração de projeção para outra. A.16 Desvio Médio Absoluto (MAD) MAD é a média (ou média) dos valores absolutos (ou magnitude) dos desvios (ou erros) entre os dados reais e os previstos. MAD é uma medida da magnitude média de erros a esperar, dado um método de previsão e histórico de dados. Como os valores absolutos são usados no cálculo, os erros positivos não cancelam os erros negativos. Ao comparar vários métodos de previsão, aquele com o menor MAD mostrou ser o mais confiável para esse produto para esse período de retenção. Quando a previsão é imparcial e os erros são normalmente distribuídos, existe uma relação matemática simples entre MAD e duas outras medidas comuns de distribuição, desvio padrão e erro quadrático médio: A.16.1 Porcentagem de Precisão (POA) Porcentagem de Precisão (POA) é Uma medida do viés de previsão. Quando as previsões são consistentemente muito altas, os estoques se acumulam e os custos de estoque aumentam. Quando as previsões são consistentemente duas baixas, estoques são consumidos e serviço ao cliente declina. Uma previsão que é 10 unidades muito baixo, então 8 unidades muito alto, então 2 unidades muito alto, seria uma previsão imparciais. O erro positivo de 10 é cancelado por erros negativos de 8 e 2. Erro real - previsão Quando um produto pode ser armazenado no inventário e quando a previsão é imparcial, uma pequena quantidade de estoque de segurança pode ser usado para amortecer os erros. Nesta situação, não é tão importante eliminar erros de previsão como é gerar previsões imparciais. No entanto, no sector dos serviços, a situação acima seria encarada como três erros. O serviço seria insuficiente no primeiro período, então overstaffed para os próximos dois períodos. Nos serviços, a magnitude dos erros de previsão é geralmente mais importante do que o viés previsto. A soma durante o período de retenção permite erros positivos para cancelar erros negativos. Quando o total de vendas reais excede o total de vendas previstas, a proporção é superior a 100. Naturalmente, é impossível ser mais de 100 precisos. Quando uma previsão é imparcial, a razão POA será 100. Portanto, é mais desejável ser 95 precisos do que 110 precisos. O critério POA seleciona o método de previsão que tem uma razão POA mais próxima de 100. Scripting nesta página melhora a navegação de conteúdo, mas não altera o conteúdo de qualquer maneira. Calcular Média Móvel Postado em 28 de abril de 2009 em Aprender Excel - 191 comentários Moving A média é freqüentemente usada para entender as tendências subjacentes e ajuda na previsão. MACD ou média móvel divergência convergência é provavelmente o mais utilizado ferramentas de análise técnica em negociação de ações. É bastante comum em várias empresas usar média móvel de vendas de 3 meses para entender como a tendência é. Hoje vamos aprender como você pode calcular a média móvel e como a média dos últimos 3 meses pode ser calculada usando fórmulas excel. Calcular a média móvel Para calcular a média móvel, tudo o que você precisa é a boa e velha função AVERAGE excel. Assumindo que seus dados estão no intervalo B1: B12, basta digitar esta fórmula na célula D3 AVERAGE (B1: B3) E agora copiar a fórmula de D3 para o intervalo D4 para D12 (lembre-se, uma vez que você está calculando média móvel de 3 meses , Você só receberá 10 valores 12-31) Isso é tudo que você precisa para calcular a média móvel. Calcule média móvel dos últimos 3 meses sozinho Vamos dizer que você precisa para calcular a média dos últimos 3 meses em qualquer ponto do tempo. Isso significa que quando você insere o valor para o próximo mês, a média deve ser ajustada automaticamente. Primeiro vamos dar uma olhada na fórmula e, em seguida, vamos entender como ele funciona. Então, o que o heck a fórmula acima está fazendo de qualquer maneira É contando quantos meses já estão inseridos 8211 COUNT (B4: B33) Então é contagem de deslocamento menos 3 células de B4 e buscar 3 células de lá 8211 OFFSET (B4, COUNT : B33) -3,0,3,1). Estes não são nada, mas os últimos 3 meses. Finalmente está passando este intervalo para a função média para calcular a média móvel dos últimos 3 meses. Seu trabalho em casa Agora que você aprendeu a calcular a média móvel usando o Excel, aqui está o seu trabalho em casa. Vamos dizer que você quer que o número de meses usado para calcular a média móvel para ser configurável na célula E1. Ou seja, quando E1 é alterado de 3 para 6, a média móvel tabela deve calcular média móvel por 6 meses de cada vez. Como você escreve as fórmulas, então não olhe para os comentários, vá e descobrir isso por si mesmo. Se você não consegue encontrar a resposta, volte aqui e leia os comentários. Go Este post faz parte da nossa série Spreadcheats. Um programa on-line de treinamento de 30 dias para usuários de tabelas e planilhas. Junte-se hoje . Compartilhe esta dica com seus amigos Olá, recentemente encontrei seu site e estou adorando todas as dicas. Obrigado por todos os seus tutoriais. Seu exatamente eu precisava no entanto, eu corri em um pouco um problema como eu também estou usando Vlookup com Offset. Por exemplo, no seu exemplo, eu usaria Vlookup no meu modelo para que, como eu colocar em novos dados a cada mês, ele iria atualizar automaticamente os dados de vendas a cada mês. Meu problema está na minha fórmula OFFSET, tenho COUNTA que, obviamente, conta todas as células com fórmulas, mesmo. Todas as idéias de como incorporar essas duas funções melhor, especialmente quando estou tentando gráfico e média que últimos 12 meses gostaria de apreciar quaisquer idéias que você ou seus leitores meu tem. Obrigado, novamente, para o incrível site Twee. Bem-vindo ao PHD e obrigado por fazer uma pergunta. Não tenho certeza se entendi corretamente embora. Você já tentou usar a contagem em vez de counta Você não mostrou-nos a fórmula offset, sem olhar que a fixação seria difícil. Eu preciso calcular uma média móvel de 12 meses que abrangerá um período de 24 meses quando concluída. Você pode me apontar na direção certa como também como começar Meus dados é vehivle milhas e começa em B2 e termina em B25. Ajuda Chandoo, esta é uma ótima fórmula para o que estou usando, exceto que eu estou tentando sem sucesso fazer a fórmula condicional. Eu tenho uma planilha, ver links abaixo, que rastreia todas as rodadas de golfe de disco jogado por amigos e eu. Ive já tem a configuração para calcular cada uma das nossas médias gerais e cada uma das nossas médias em cursos específicos. O que eu estou tentando fazer agora no entanto também é configurar uma média móvel com base em nossas 5 rodadas mais recentes. Mais uma vez os dados foram inseridos vou mudá-lo para 10, mas por agora 5 será apenas multa. Posso obter a média móvel para o trabalho, mas não consigo descobrir como adicionar restrições condicionais. IE Eu quero, por exemplo, apenas os últimos 5 rodadas que foram jogados por Kevin. Depois que vou querer apenas os últimos 5 rodadas jogado por Kevin no curso Oshtemo. O código que estou usando está abaixo. O código para a célula C9 está listado abaixo. IF (B90, IF (B9lt6, AVERAGEIF (DiscRoundsA2: A20000, A9, DiscRoundsM2: M20000), MÉDIA (OFSET (DiscRoundsM2, IF (DiscRoundsA2: A20000A9, COUNT , 1)))) Essencialmente, se houver 0 rodadas deixa a célula em branco. Se houver 5 ou menos rodadas apenas usa a média de todas as rodadas. Finalmente, se houver 6 ou mais rodadas o código, em seguida, usa sua função média desta postagem. Depois de tentar muitas coisas no entanto estou incerto como condicionalmente puxar os últimos 5 rodadas para que ele só puxa os últimos 5 rodadas do indivíduo nomeado na célula A9. A fórmula que estou referenciando não está atualmente na célula C9 na minha planilha que está vinculada. Eu só tenho testá-lo lá. DND: use a seguinte fórmula na célula C13 em diante MÉDIA (B2: B13) e arraste para baixo. Oi, Im certeza de que há algo listado acima que é supor para ajudar, mas Im ainda novo para excel e estou sentindo sobrecarregado. Eu só tenho um novo emprego e estou tentando fazer uma boa impressão, então qualquer ajuda seria ótimo Eu tenho dados para cada mês em 2009, 2010 e 2011 indo em toda e várias linhas deste. Todo mês no início do mês eu preciso calcular as vendas do ano anterior. Atualmente minha fórmula é SUM (AG4: AR4) SUM (U4: AF4). Exemplo: mês atual é março. Informações que eu preciso é total de vendas de março de 2010 a fevereiro de 2011 dividido por março de 2009 a fevereiro de 2010 e funciona muito bem, mas é muito demorado para ter que mudá-lo todos os meses. Existe uma maneira que eu posso começar a fórmula para mudar automaticamente no início do mês Eu não sei se eu fiz um bom trabalho explicando isso ou não. Parabens pelo seu novo trabalho. Você pode arrastar sua fórmula para o lado (para a direita, por exemplo.) E mostra o s para o próximo mês automaticamente. Não, o que eu preciso é que a fórmula mude a cada mês. Tenho janeiro de 2009 até dezembro de 2011 caixas de atravessar com dados neles. IFERROR (SUMA (AG4: AR4) SUM (U4: AF4), 0) No próximo mês eu preciso para ir de calcular a soma de 0310 dados para 0211 dados divididos por 0309 dados para 0210 dados e mudar para 0410 para 0311 dados divididos por 0409 dados para 0311 dados. O que eu preciso é uma fórmula que pode se referir à data atual e saber que no dia 1 de cada mês, ele precisa mudar as fórmulas para a próxima Anterior 1-12 meses dividido pelos 13-24 meses anteriores. Não tenho certeza se isso faz sentido. Basicamente, eu uso esta fórmula cerca de 8 vezes em uma folha e tenho cerca de 200 folhas. Sorry for the double posting and thank you on the congrats What I need: If the current date is greater than the 1st of the month then the entire cell references to calculate the sales of prev year needs to move to the right by one column This is what Ive come up with. IF(P1gtN1,(SUM(AH4:AS4)SUM(V4:AG4))) p1 is current date n1 is 1st day of month AH4:AS4 is data from 0310-0211 V4:AG4 is data from 0309-0210 Part Im having issues with: How do i make it so that the formula knows exactly what 12 sections to grab and how to get to automatically change at the 1st of the month. Julie. You can use OFFSET formula to solve this. Assuming each column has one month, and first month is in C4 and current date is in P1 The above formula assumes that each column has months in Excel date format. You may want to tweak it until it produces right result. This is probably extremely simple and I am making it more complicated than I need to, but you wrote, The above formula assumes that each column has months in Excel date format. Ive been struggling to do this without having it turn my data into dates. Julie. What I meant is, the row number 4, where you have month names, should contain this data - 1-jan-2009 1-feb-2009 1-mar-2009 Also, I notice few errors in my formula. The correct formula should be, SUM(offset(C5,,datedif(C4,P1,m)1-12,1,12)) SUM(offset(C5,,datedif(C4,P1,m)1-24,1,12)) The above formula assumes dates are in row 4 and values are in row 5. I think that is exactly what I needed. Thank you thank you thank you so much My problem is very similar jasmins (61) and Azrold (74). I have disgusting amounts of data, from D:2 to D:61400 (and correspondingly in E and F, Ill have to do the same thing for these columns as well). Im trying to find the average for batches, such that D2:19, D20:37, D38:55 and so on - clumping 18 rows together and then finding the next average without re-using any previous row. Id also have to likely do this for every 19 and 20 clumps as well, but an example using 18 is fine. Could you annotate the formula you post Im a little confused on what the last 4 numbers mean in the COUNTA part. Thank you so much, this is going to make my life so much easier Laura This is easily done with Average and Offset . Assuming you are doing this in Col J and are averaging Col D J2: AVERAGE(OFFSET(D1,(ROW()-2)J11,,J1)) Where J1 will have the number 18 for a moving total of 18 numbers Copy down Row 2 will average Rows 2-19 Row 3 will average Rows 20-37 etc . You can also add labels in say Col H H2: Rows amp(ROW()-2)J12amp - amp(ROW()-1)J11 Copy down . I have mocked this up at: rapidsharefiles1923874899Averages. xlsx I am beginner trying to: 1. structure a spreadsheet that will then be used to 2. determine the optimal period for my moving average, within the range of a 5 day moving average to a 60 day moving average. Each cell represents the number of sales for that day, ranging from 0 to 100. I would prefer that each month of daily sales be in a new column. Currently I have 3 months of data, but obviously that will grow. So can you please tell me how to set up the spreadsheet and then the appropriate formulas (and their locations) Thank you very much, Hello again Hui, I am struggling yet again with the same spreadsheet you helped me with earlier. As beore, I have the following rows of monthly manually entered data: Volume of Calls Calls Answered age of calls abandoned Average handling time My line manager would now like 2 rows beneath these showing (by using formula): Average speed of answer Average abandoned time And as if that wasnt enough, she would like, for both rows, a summary cell at the end of the 12 months showing the yearly figure :( Many thanks again for any help you are able to give, I am using the vertical version for calculating a moving average. I am stumped when I need to calculate a 6-period moving average. My data starts in column c and the 6-period and 3-period averages are two columns to the right of the last period of data. I add a column for each month, so I currently adjust the formula manually each month: AVERAGE(EC8:EH8) My most recent attempt (that failed) is: AVERAGE(C6,COUNT(C6:EH6),-6,6,1) Please provide an explanation of why this didnt work when responding so I can understand how to create future f ormulas. Thank you so much, Kimber Kimber. Welcome to Chandoo. org and thanks for commenting. I think it is not a good idea to place averages in right most column as it keeps moving. Instead you could modify your sheet so that moving average is placed at left most column (and this will stay there even if you add extra columns to the right). No matter where the average cell is, you can use this formula to calculate the moving average. Afyter having read the whole of this thread I can see Im going to need a combination offset, match, count and averageif but Im not sure where. My problem is as follows: Each month there are over 100 people reporting activity - Column A is their name, Column B is the month, Column C is the year and Columns D through M is their activity in several categories. I need to find their 3 month and six month averages and display that in another worksheet although I could have them displayed in Columns N and O if needed. I use a pivot table to produce sums and total averages but it wont handle moving averages. Any pointers would be greatly appreciated. Thanks, Ben This will average the last MovAvg number of rows including itself (take out the -1 if you want it to not include itself). D75 is the cell that this formula is referencing (my data was very long) MovAvg is how big you want the moving average to be (I assigned this as a named cell (select the cell, Formulas --gt Defined Names --gt Define Name) You can make variable names in a spreadsheet to avoid always having to use rowcolumn.) This starts from the current cell (D75 in this case), goes up MovAvg-1 rows, over 0 columns, selects MovAvg nuber of rows, with 1 column. Passes this to the average function. Hi I read through every post, but havent been able to get this working correctly. How do we calculate the moving average of a percentage This is calculated weekly. Column A - accts met Column B - accts sold Column K - closing Column D - 2 week moving average of the closing Example of week 1 and week 2 Column A, row 7 is 25 and row 8 is 1 Column B, row 7 is 1 and row 8 is 1 Column K, row 7 formula is 125 (4) and row 8 is 11 (100) Column D - The formula in a prior post gives me an answer of 52 2 week avg, but thats not correct. it should be 226 (7) IF(ISERROR(AVERAGE(OFFSET(K7,COUNT(K7:K26)-2,0,2,1))),,AVERAGE(OFFSET(K7,COUNT(K7:K26)-2,0,2,1))) What do i need to change in that formula to use columns A amp B instead of the column K You are trying to average averages, which doesnt work. Try this simple formula beginning in D8: IF(ISBLANK(B8),,(B7B8)(A7A8)) Copy and paste the formula down to D26. This should give you a moving 2 week average. Remember to format column D as a percentage with how ever many decimal points you want. Im pretty much an excel neophyte. I just stumbled across your site amp am looking forward to perusing it at length in the months ahead. Im trying to calculate a 3 month moving average of expenses amp cannot figure out what I am doing wrong. Even after reading this article and the post on offset Im not sure I understand the formula. In my sandbox, I have: Column A - Months A2:A17Sept 2012 - Dec 2013 Column B - Total monthly expenses B2:B8 (B8 because March is the last completed month) - Those totals are 362599,372800,427317,346660,359864,451183,469681 Colum C - 3 Month Moving Average. I put the following formula in C4 (To start calculating in Nov of last year, just for grins). Since there are only three months in the data set at that point, I would assume it calculates the moving average of the first three months. The formula comes up with 469,681. When I average the first three months, I come up with 387,572. What am I doing wrong or misunderstanding Thanks for the help and for putting this website together. Hi Chandoo You have one really useful project here, tons of thanks In the very beginning of this thread Shamsuddin asked something similar to what I need, reverse calculation of values from the moving average. Maybe its stupid, but I cant come up with any ideas except for figure-by-figure lookup. If possible - please advice with this articles data, to get the concept. Actually, Id be happy to get anything, as google was of no use ) Once again - thank you so much for this site Im not really sure what you mean by reverse calculating a moving average Can you explain what your trying to doachieve Posting a sample file might help also Refer: chandoo. orgforumstopicposting-a-sample-workbook Hi Hui, I mean, I have a column of figures (e. g. monthly shipments), which are calculated as moving average based on another data set (e. g. monthly manufacturing output). Smth like this: (A1) Jan Feb Mar Apr May Jun Mfg Ship 100 500 450 600 600 700 Where Ship average(B2:C2) I know only shipments volumes, and have to find out respective mfg volumes. Generally speaking, the question is how we can find initial data with only MA on hand Suppose, this thread may not be the one for asking this (if you agree - maybe you know where to ask). Its just that Shamsuddins question was the most relevant result out of 10 google pages Mey To calculate the original data from a Moving Average (MA) you need two MAs eg a 9 and a 10 day MA or 1 MA and 1 piece of data From these you can recalculate the previous result But if you have a formula Average(B2:C2) you should have access to the data If it is a 2 day MA like your formula above MAAverage(B2:C2) MA(B2C2)2 if you know B2 C2(2MA)-B2 If you have a set of data you can share I can give a better solution Refer: chandoo. orgforumstopicposting-a-sample-workbook Great website. Forgive this question. I used to be an Expert in Lotus 123 decades ago, but I find Excel somewhat backwards in its progressions to Lotus 123, so I am starting over with Excel 2010. I am a logical person and I try to understand what the formulas do when I use them. I notice that there are not but 14 sales figures in column B, yet somehow we are counting from B4 to B33. I tested the formula out using: AVERAGE(OFFSET(B4,COUNT(B4:B14)-3,0,3,1)) and I get the same result as if I used AVERAGE(OFFSET(B4,COUNT(B4:B33)-3,0,3,1)). My first rule of old school spreadsheet creation is never to build a data table larger than the data provided if it is static (that is, not expanding in data). As a result, I have no real clue as to how OFFSET works. Is there a clear explanation of OFFSET with a singular example of it being used outside of the average and all by itself The reason I came here is to build a spreadsheet model that would use iterative calculations to find the best fit for profit data (that is maximizing profit) when the a short moving average of the cumulative profit curve (or equity curve) crosses OVER the longer term moving average of the equity curve. I find nothing that allows expansion of moving averages from 3 periods to say 100 periods (for both averages). By using the MA cross over to determine which trades to take, one can find an optimal level of profit to run the model from (which could be tweaked when the model is reoptimized). I can find nothing in most Excel books that cover this, and this kind of calculations should be relatively simple to pull off. Where could I find such information Thanks again for the wonderful website. Just in case you havent found it yet, heres a link for the OFFSET function: I have a question. I already have a 3 day moving average that I was given in my problem. Is it related to the average of stocks. The questions says that you have 1 stock that you PLAN on selling on day 10. My 3 day moving average is an integration from a, b where at and bt3 at any time. If you want to find the price you expect to sell the share for, do you integrate from 6,9 9,11 7,10. Do you want the far end of day 10, the middle of day 10, or leave day 10 out I am not sure what time frame to put this 3 day average between. Again, my function represents up to day 14, but I need the price at day 10. ivan Santos says: Im looking to see the moving average for a call center. im trying to find the index for every month for a full year. i only have 2 years worth of data and im wanting forecast out for 2014 in quarters. can i use this method for this I have a problem in average, I want to calculate the average of highlighted rows only in coloumn F on colomn G which also has highlighted blank cells Hi, I am working on a spreadsheet that has the past four years of weekly data but the current years data is incomplete as it only gets entered each week. Is there a way of setting up a formula that will calculate an average based on the number of weeks that have data in them For eg. in the middle of the year it will create an average based on cells 2-27 26 but the next week it would be cells 2-28 27. Its doing my head in and I dont want to have to manually adjust the average every week. Great site by the way Very helpful. ) Rosie Yes this can be done Can you please ask the question at the Forums and attach a sample file chandoo. orgforum Ok here is my question that has been plaguing me for the last 2 12 months and I havent found a solution anywhere on the web: I have a sales team and I need a moving avg but with a fix format and a shifting date rage that is fixed as well. i. e. Sales person 1115 2115 3115 12114 11114 10114 ME 1 2 0 4 5 6 What I am trying to do is this: Lets say today date is 3115 I need a way to go back 3 (6 and 12 as well) months from the current date and avg the sales numbers. The hard part is I would like to just change the year of the dates so I dont have to mess with the format or if I hire(fire) someone. So in the above example I would have the formula take the 6 1 2 (9)3 3 but then as time would go on this would keep going but once the new year began in JAN 2016 it would have to use the figures from the past 2015 data (3,6 and 12 Month rolling avgs). I hope that this clear and I would love to get some help with this. Agradeço antecipadamente. Can you please ask the question in the Chandoo. org Forums at: forum. chandoo. org Attach a sample file to simplify the process Ok I have posted to the forums and uploaded a sample file. 8230 Calculate Moving Average Chandoo. org 8211 Learn Moving average is frequently used to understand underlying trends and helps in forecasting. MACD or moving average convergence divergence is probably the 8230 Amelia McCabe says: Looking for a little help. I have tried what I think is a modified version of this formula that is not really working. I have a row of data (one number per month) that I need a continuous average for based on the number of months of entered data not on 12 months. Data are in cells b53 to m53. So I tried to modify this formula as follow (it did not work) and I wonder if I can use this formula this way at all since my data is in a row not a column. AVERAGE(OFFSET(B53COUNT(B53:M53)-12,0,1,12)). Have also tried the arguments as 0,0,1,12 and -1,0,1,12. Please help me understand if I am up the totally wrong tree or just on the wrong branch. Amelia Without seeing the data id suggest that AVERAGE(OFFSET(B53,COUNT(B53:M53)-12,0,1,12)) should be: AVERAGE(OFFSET(B53. 1,COUNT(B53:M53))) One issue with the original formula is that there are 12 cells between B53:M53, If only 5 have data in them, then you take 12 away, the offset is trying to offset B53, a negative 7 columns, which will force an error You may also be able to use the Averageifs function Possibly: Averageifs(B53:M53,B53:M53,0) Are you able to post a sample file in the Chandoo. org Forums forum. chandoo. orgMoving average and exponential smoothing models As a first step in moving beyond mean models, random walk models, and linear trend models, nonseasonal patterns and trends can be extrapolated using a moving-average or smoothing model. A suposição básica por trás dos modelos de média e suavização é que a série temporal é estacionária localmente com uma média lentamente variável. Assim, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, usá-lo como a previsão para o futuro próximo. Isto pode ser considerado como um compromisso entre o modelo médio eo modelo randômico-sem-deriva. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel é chamada frequentemente uma versão quotsmoothedquot da série original porque a média de curto prazo tem o efeito de alisar para fora os solavancos na série original. Ajustando o grau de suavização (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ótimo entre o desempenho dos modelos de caminhada média e aleatória. O tipo mais simples de modelo de média é o. Média Móvel Simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para ficar Para uma previsão da série de tempo Y feita o mais cedo possível antes de um determinado modelo). Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar aquém do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Dessa forma, dizemos que a idade média dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: é a quantidade de tempo que as previsões tendem a ficar atrás de pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados em responder a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m é muito grande (comparável ao comprimento do período de estimação), o modelo SMA é equivalente ao modelo médio. Como com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot aos dados, isto é, os erros de previsão mais baixos em média. Aqui está um exemplo de uma série que parece apresentar flutuações aleatórias em torno de uma média de variação lenta. Primeiro, vamos tentar encaixá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de um termo: O modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo ele escolhe grande parte do quotnoise no Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se preferirmos tentar uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais suaves: a média móvel simples de 5 períodos produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nessa previsão é 3 ((51) 2), de modo que ela tende a ficar atrás de pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não virar até vários períodos mais tarde.) Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões a partir do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se alargam à medida que o horizonte de previsão aumenta. Isto obviamente não é correto Infelizmente, não há uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para este modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões de longo prazo. Por exemplo, você poderia configurar uma planilha na qual o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc. dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e então construir intervalos de confiança para previsões de longo prazo adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obteremos previsões ainda mais suaves e mais de um efeito retardado: A idade média é agora de 5 períodos ((91) 2). Se tomarmos uma média móvel de 19 períodos, a idade média aumenta para 10: Observe que, de fato, as previsões estão ficando atrás de pontos de inflexão por cerca de 10 períodos. A quantidade de suavização é melhor para esta série Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3-termo: Modelo C, a média móvel de 5-termo, rende o menor valor de RMSE por uma pequena margem sobre o 3 E médias de 9-termo, e suas outras estatísticas são quase idênticas. Assim, entre modelos com estatísticas de erro muito semelhantes, podemos escolher se preferiríamos um pouco mais de resposta ou um pouco mais de suavidade nas previsões. O modelo de média móvel simples descrito acima tem a propriedade indesejável de tratar as últimas k observações de forma igual e ignora completamente todas as observações anteriores. (Voltar ao início da página.) Browns Simple Exponential Smoothing (média ponderada exponencialmente ponderada) Intuitivamente, os dados passados devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que a segunda mais recente, ea segunda mais recente deve ter um pouco mais de peso do que a 3ª mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Vamos 945 denotar uma constante quotsmoothingquot (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série, conforme estimado a partir dos dados até o presente. O valor de L no tempo t é calculado recursivamente a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: Na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior por uma fração 945. é o erro feito em Tempo t. Na terceira versão, a previsão é uma média móvel exponencialmente ponderada (ou seja, descontada) com o fator de desconto 1- 945: A versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: ela se encaixa em um Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior ea célula onde o valor de 945 é armazenado. Observe que se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, assumindo que o primeiro valor suavizado é definido igual à média. A idade média dos dados na previsão de suavização exponencial simples é de 1 945 em relação ao período para o qual a previsão é calculada. (Isso não é suposto ser óbvio, mas pode ser facilmente demonstrado pela avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a ficar para trás de pontos de viragem em cerca de 1 945 períodos. Por exemplo, quando 945 0,5 o atraso é 2 períodos quando 945 0,2 o atraso é de 5 períodos quando 945 0,1 o atraso é de 10 períodos, e assim por diante. Para uma determinada idade média (isto é, a quantidade de atraso), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão de média móvel simples (SMA) porque coloca relativamente mais peso na observação mais recente - i. e. É ligeiramente mais quotresponsivequot às mudanças que ocorrem no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 têm uma idade média de 5 para os dados nas suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no modelo SMA. Uma outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, de modo que pode ser otimizado com facilidade Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor óptimo de 945 no modelo SES para esta série revela-se 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3.4 períodos, que é semelhante ao de uma média móvel simples de 6-termo. As previsões a longo prazo do modelo SES são uma linha reta horizontal. Como no modelo SMA e no modelo randômico sem crescimento. No entanto, note que os intervalos de confiança calculados por Statgraphics agora divergem de uma forma razoável, e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um tanto quotmore previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. Assim a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como um modelo quotARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1-945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série aqui analisada, o coeficiente MA estimado (1) resulta ser 0,7029, que é quase exatamente um menos 0,2961. É possível adicionar a hipótese de uma tendência linear constante não-zero para um modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão então uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial de longo prazo constante a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa adequada de inflação (crescimento percentual) por período pode ser estimada como o coeficiente de declive num modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode basear-se em outra informação independente sobre as perspectivas de crescimento a longo prazo . (Voltar ao início da página.) Browns Linear (ie duplo) Suavização exponencial Os modelos SMA e SES assumem que não há tendência de qualquer tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Antecipadamente quando os dados são relativamente ruidosos), e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. O que acontece com as tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaque claramente contra o ruído, e se houver uma necessidade de prever mais de um período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de suavização exponencial simples pode ser generalizado para obter um modelo linear de suavização exponencial (LES) que calcula as estimativas locais de nível e tendência. O modelo de tendência de variação de tempo mais simples é o modelo de alisamento exponencial linear de Browns, que usa duas séries suavizadas diferentes que são centradas em diferentes pontos do tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de suavização exponencial linear de Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em um número de formas diferentes mas equivalentes. A forma quotstandard deste modelo é usualmente expressa da seguinte maneira: Seja S a série de suavização simples obtida aplicando-se a suavização exponencial simples à série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, Exponencial, esta seria a previsão para Y no período t1.) Então deixe Squot denotar a série duplamente-alisada obtida aplicando a suavização exponencial simples (usando o mesmo 945) à série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dada por: Isto resulta em e 1 0 (isto é, enganar um pouco, e deixar a primeira previsão igual à primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isto produz os mesmos valores ajustados que a fórmula baseada em S e S se estes últimos foram iniciados utilizando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Smoothing Brown8217s O modelo LES calcula as estimativas locais de nível e tendência alisando os dados recentes, mas o fato de que ele faz isso com um único parâmetro de suavização coloca uma restrição nos padrões de dados que é capaz de ajustar: o nível ea tendência Não podem variar em taxas independentes. Holt8217s modelo LES aborda esta questão, incluindo duas constantes de alisamento, um para o nível e um para a tendência. Em qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui eles são calculados recursivamente a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam alisamento exponencial para eles separadamente. Se o nível estimado ea tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão para Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada recursivamente pela interpolação entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1-945. A mudança no nível estimado, Nomeadamente L t 8209 L t82091. Pode ser interpretado como uma medida ruidosa da tendência no tempo t. A estimativa actualizada da tendência é então calculada recursivamente pela interpolação entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: A interpretação da constante de suavização de tendência 946 é análoga à da constante de suavização de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda apenas muito lentamente ao longo do tempo, enquanto modelos com Maior 946 supor que está mudando mais rapidamente. Um modelo com um 946 grande acredita que o futuro distante é muito incerto, porque os erros na tendência-estimativa tornam-se completamente importantes ao prever mais de um período adiante. As constantes de suavização 945 e 946 podem ser estimadas da maneira usual minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas se tornam 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume muito pouca mudança na tendência de um período para o outro, então basicamente este modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados que é utilizada na estimativa do nível local da série, a idade média dos dados que são utilizados na estimativa da tendência local é proporcional a 1 946, embora não exatamente igual a . Neste caso, isto é 10.006 125. Isto não é um número muito preciso, na medida em que a precisão da estimativa de 946 é realmente de 3 casas decimais, mas é da mesma ordem geral de magnitude que o tamanho da amostra de 100, portanto Este modelo está calculando a média sobre bastante muita história em estimar a tendência. O gráfico de previsão abaixo mostra que o modelo LES estima uma tendência local ligeiramente maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pela montagem do modelo SES com ou sem tendência, de modo que este é quase o mesmo modelo. Agora, eles parecem previsões razoáveis para um modelo que é suposto ser estimar uma tendência local Se você 8220eyeball8221 esse enredo, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foram calculados minimizando o erro quadrático das previsões de um passo à frente, e não as previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está olhando são 1-passo-frente erros, você não está vendo a imagem maior de tendências sobre (digamos) 10 ou 20 períodos. A fim de obter este modelo mais em sintonia com a nossa extrapolação do globo ocular dos dados, podemos ajustar manualmente a tendência de alisamento constante para que ele usa uma linha de base mais curto para a estimativa de tendência. Por exemplo, se escolhemos definir 946 0,1, então a idade média dos dados usados na estimativa da tendência local é de 10 períodos, o que significa que estamos fazendo a média da tendência ao longo dos últimos 20 períodos. Here8217s o que o lote de previsão parece se definimos 946 0,1, mantendo 945 0,3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso para extrapolar esta tendência mais de 10 períodos no futuro. E sobre as estatísticas de erro Aqui está uma comparação de modelos para os dois modelos mostrados acima, assim como três modelos SES. O valor ótimo de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com ligeiramente mais ou menos responsividade, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alfa 0,3048 e beta 0,008 (B) Holts linear exp. Alisamento com alfa 0,3 e beta 0,1 (C) Suavização exponencial simples com alfa 0,5 (D) Suavização exponencial simples com alfa 0,3 (E) Suavização exponencial simples com alfa 0,2 Suas estatísticas são quase idênticas, portanto, realmente não podemos fazer a escolha com base De erros de previsão de 1 passo à frente dentro da amostra de dados. Temos de recorrer a outras considerações. Se acreditarmos firmemente que faz sentido basear a estimativa de tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se queremos ser agnósticos quanto à existência de uma tendência local, então um dos modelos do SES pode ser mais fácil de explicar e também dar mais previsões de médio-caminho para os próximos 5 ou 10 períodos. Evidências empíricas sugerem que, se os dados já tiverem sido ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar os resultados lineares de curto prazo Muito para o futuro. As tendências evidentes hoje podem afrouxar no futuro devido às causas variadas tais como a obsolescência do produto, a competição aumentada, e os abrandamentos cíclicos ou as ascensões em uma indústria. Por esta razão, a suavização exponencial simples geralmente desempenha melhor fora da amostra do que poderia ser esperado, apesar de sua extrapolação de tendência horizontal quotnaivequot. Modificações de tendência amortecida do modelo de suavização exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES com tendência a amortecimento pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de suavização (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos à frente que você está prevendo. Em geral, os intervalos se espalham mais rapidamente à medida que o 945 fica maior no modelo SES e eles se espalham muito mais rápido quando se usa linear ao invés de alisamento simples. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao topo da página.)
No comments:
Post a Comment